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Abstract 

The analytical solution of the bound and scattering quantum states is derived based on 

Lippmann-Schwinger equation which can also be derived from well known Schrödinger 

equation. From the transition matrix element in momentum space, the phase shift which is one 

of the scattering parameters is calculated and the nature of interaction is deduced from the 

phase shift results. A two-body bound state with Yamaguchi potential is determined 

analytically by solving Lippmann-Schwinger equation.  The binding energy of deuteron is 

evaluated analytically and it is 2.22 MeV.  

Key words: bound and scattering states, Lippmann-Schwinger equation, T- Matrix, phase   

                     shift. 

 

1. Introduction 

Almost everything we know about nuclear and atomic physics has been discovered by 

scattering experiments, e.g. Rutherford’s discovery of the nucleus, the discovery of sub-

atomic particles (such as quarks), etc.  The nature of interaction between particles can be 

revealed by studying the scattering parameters such as phase shift, scattering length, effective 

range and cross-section. These parameters can easily be deduced from transition matrix. The 

transition matrix is primitive concept of scattering matrix. The study of scattering process is 

very important for the students who are studying at undergraduate and postgraduate level. A 

two-body bound state with Yamaguchi potential is determined analytically by solving 

Lippmann-Schwinger equation.In this paper, the very simple and clear formulation of the 

scattering and bound states was formulated by using Yamaguchi potential. 

 

2. Formalism 

Derivation of Lippmann-Schwinger Equation From Schrödinger Equation 

The time-independent form of the Schrödinger equation can be used to describe 

scattering processes. The Schrödinger equation can be written as 

    EV̂Ĥ0  (1.1) 

where 0H  stands for the kinetic energy operator, 2/p̂Ĥ 2

0   in momentum space and 

2/Ĥ 2

0 


 in configuration space.  The momentum eigenstate of 0Ĥ is defined by 

 pp
2

p
Ĥ

2

0 

,

 (1.2) 
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 ppp p̂
.
 (1.3) 

The potential that scatters a particle coming in is assumed to be short ranged, i.e. V= 0 

beyond a certain distance "a" where "a" is the size of the scatterer. In this condition there 

exists only the free motion of the particle and it is represented by the free particle momentum 

eigenstate p . We will use the general notation of this free particle momentum eigenstate p  

as 0  and Eq.(1.2) can be reduced to free motion 

 00

2

00 E
2

p
Ĥ  

 .

 (1.4) 

We are interested in the scattering process caused by the effect of the potential "V". 

Because of this potential effect, the energy eigenstate differs from the free particle state. If it 

is an elastic scattering, there will be no change in energy. To find out about the effect of the 

potential, we reorder the Eq.(1.1). 

  V̂)ĤE( 0 .
 (1.5) 

Naively we can write the solution of Eq.(1.5) as follows: 

 


 V̂
ĤE

1

0 .

 (1.6) 

When we go to the scattering process, we will apply the following Lippmann-

Schwinger equation. These will be singularity when the value of H0 becomes close to E. To 

avoid the singularity of the operator
0ĤE

1


, energy E is made to be slightly complex value. 

We can write the solution of Eq.(1.6) as  

 )(

0

0

)( V̂
ĤiE

1  


  (1.7) 

where, 0)EĤ( 00  . 

This is the Lippmann-Schwinger equation in ket form. The state 
)(  is the 

scattering state for an outgoing wave in momentum space generated by the potential operator 

V. The iε is the correct boundary condition for an outgoing wave and 0  is the free 

momentum state which initiates the scattering process. 

Let 0p0 and
)()(  

0p . By taking the inner product of Eq. (1.7) with the bra p , 

we get 

 )(

0

)(

ĤiE

V̂  



00 p0p pppp

.

 (1.8) 

By operation of 0Ĥ on the bra p , we can express the equation in simple form. 
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 )(

p2

)(

p 00
V̂

2

p
iE

1
)()(  




 pppp 0
 (1.9) 

where, )()(

p

)(

p 00
pp

  and )( 00 pppp  . We insert the completeness relation 

1d  ppp into the above equation and becomes 

)(V̂d

2

p
iE

1
)()( )(

p2

)(

p 00
ppppppp 0






 



.

 (1.10) 

Transition Matrix 

The above equation contains the driving term in the form of a delta function and the 

pole term. We define a new quantity as 

 ),(TV̂ )(

p0 0ppp  

.
  (2.1) 

We rewrite the Eq.(1.10) by inserting the operator V̂ into both sides and the 

completeness relation into the right hand side of it. Then Eq.(1.10) becomes 

)(

p2

)(

p 00
V̂

2

p
iE

1
V̂dV̂V̂  






  ppppppp 0

.

 (2.2) 

We can write down Eq.(2.2) with the help of Eq.(2.1) as 

),(T

2

p
iE

1
),(Vd),(V),(T

2 000 ppppppppp 






   (2.3) 

where, ),(T 0pp is transition matrix (T-matrix), which interprets as the transition from the 

initial momentum p0 to the final momentum p because of the driving term ),(V 0pp . 

Therefore, T-matrix elements play an important role because they carry physical information 

of considering system. 

 

Calculation of T-matrix Element in Momentum Space 

In this section, we will discuss the two body T-matrix elements.  For the scattering 

process the Lipmann-Schwinger Equation for T-matrix in operator form  is  

  

T̂GV̂V̂T̂ 0  (3.1) 

where, G0 is free propagator,  2/ˆ1 2

00 pEG  .  We need to project onto momentum 

space as 

 pT̂GV̂ppV̂ppT̂p 0


.
 (3.2) 
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We insert the completeness relation onto the second part of the Eq. (3.2), then 

 pT̂ppGV̂ppdppV̂ppT̂p 0

2   .
 (3.3) 

By operation of G0 on p   we get 

 pT̂ppV̂p

2

p
E

1
pdppV̂ppT̂p

2

0

2 






   (3.4) 

where, E0 is incident energy and 22

00 pE  , the Eq. (3.4) becomes  

pT̂ppV̂p
pp

1
pdp2pV̂ppT̂p

22

0

2 


 
.

 (3.5) 

It can encounter the situation p0 = p", then the integral will diverge and so we add iε to 

overcome this divergence. 

pT̂ppV̂p
pip

1
pdp2pV̂ppT̂p

22

0

2 


 
.

  (3.6) 

This is the same as Eq.(2.3).  This equation can be solved directly by introducing a 

small value of iε, this technique will appear on the upcoming volume of this journal. 

We emphasize the second part of Eq. (3.6) and adding and subtracting the additional term 

00022

0

2

0 pTppVp
pip

p
pd2


  and regroup this equation. And then we apply the 

principal value theorem, which is defined as  

 
0

q q
lim - i (x )

x i x
  

  
 

Then we use the property of delta function a)]-x()ax([
a2

1
)a-x( 22 δ++δ=δ  and 

the standard integration form 
ax

ax
ln

a2

1
dx

ax

1

0

22 







. We can get 

22

0

000

2

0

2

pp

pTppVpppTppVpp
pd2pV̂ppT̂p




   

 












 i

pp

pp
lnpTppVpp

0max

max0

0000

.

 (3.7) 

Our integral limit is from zero to infinity but we determine that maxp is enough for that 

limit. For p' = p0, the Eq. (3.7) is  

22

0

000

2

00

2

00
pp

pTppVpppTppVpp
pd2pVppTp




   
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 












 i

pp

pp
lnpTppVpp

0max

max0

0000  (3.8) 

The above equation is integral form of T-matrix elements and it is usually used to 

study the scattering problem. 

 

Analytical Solution of T-matrix 

To calculate the analytical solution of T-matrix we use the separable Yamaguchi 

potential. The S-wave potential is of the form  

 )pg(g(p))pV(p,    (4.1) 

where, g’s are the form factors and which are the function of momentum  

  
22

1

p
pg





 (4.2) 

and p’s are the initial and final momenta between the two nucleons, respectively. The 

parameters of the Yamaguchi potential for 
1
S0 state are λ = −0.5592 MeV fm

-1
 and β=1.13 

fm
-1

. We take the T-matrix is of the following form 

      T p,p g p g p  
.
 (4.3) 

We insert this equation in Eq.(3.8) and the intermediate step is  

           
 

 2 2

2 2

0

1
g p g p g p g p 2 g p g p p dp g p

p p
         

 


.

 (4.4) 

We rearrange Eq.(4.4) and the intermediate step of constant   as 

 

 
 2 2

2 2

0

1
1 2 p dp g p

p p


 

    
 


.

 (4.5) 

Eq.(4.3) becomes 

           

)pg(g(p)

)p(g
pp

1
pdp21

)pT(p,
2

22

0

2












.

 (4.6) 

If we know  , we can solve the Eq. (4.6). By using Eq.(4.2) and Eq.(4.5) becomes as 

 

   
2

22 2 2 2
0

1 1
1 2 p dp

p p p


 

   
    


.

 (4.7) 

We rearrange Eq.(4.7) as 
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   
2

222 2 2
0

1 1
1 2 p dp

p p p


 

   
  


.

 (4.8) 

We consider 

   2 2 22 2

1 1 1

2 pp




     
 and Eq.(4.8) becomes 

 

   
2

2 2 22

0

1 1
1 2 p dp

2 pp p


 


   

  


.

 (4.9) 

We consider as a complex number and then 

 

    
2

2 22 2
0 0

1 1
1 2 p dp

2 p p p i




 


   

    


.

 (4.10) 

The pole appears at 0pp  and  ip , the integral will diverge. Therefore we use 

Residue theorem. We use,      
0

0
z z

Residue b lim z z f z


  and then 

    
     0

2

0 0 2 2p p
0 0

p 1
Res p lim p p

p p p p p


  

    
 (4.11) 

  
 

0
0 2 2

0

p
Res p

2 p
 

 
 (4.12) 

    
     

2

22p i
0

p 1
Res i lim p i

p ip p p i 


    

    
 (4.13) 

  
 2 2

0

Res i
2i p


  

 
 (4.14) 

Residue Theorem,   sRei2dz)z(f
.
 

Let say the integral to be A 

    0A 2 i Res p Res i         (4.15) 

 
   



















22

0

22

0

0

pi2p2

p
i2A  (4.16) 

 
   



















22

0

22

0

0

pp

ip
A

.

 (4.17) 
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Now, we get the solution of Eq.(4.10) as 

 

   


























22

0

22

0

0

pp

ip

4
21

.

 (4.18) 

After differentiating Eq.(4.18), 

 

      































222

0

2

22

0

222

0

0

p

2

p

1

p

pi2

4

1
21

 (4.19) 

Regrouping Eq.(4.19) and then 

 

  























222

0

2

0

2

0

p

pi2p

4

1
21

,

 (4.20) 

Finally, we get the solution in simplest form as 

 
 

  























222

0

2

0

p

ip

4

1
21

.

 (4.21) 

Now, we get analytical T matrix for single channel as 

  
 

 

   pgpg

p

ip

4

1
21

p,pT

2
22

0

2

0



























.

 (4.22) 

The Analytical Calculation for Two-Body Bound State 

We will solve two-body bound state with Yamaguchi potential analytically. The 

Lippmann Schwinger equation for two-body system in single channel can be written as 

        2

2

0

1
p p dp g p g p p

p
E



      




  (5.1) 

The above equation can be simplified as 

        2

2

1
p g p p dp g p p

p
E

      




  (5.2) 

We set as, 

    2

0

C p dp g p p



       (5.3) 



8 
 

 

 

The analytical solution of wave function can be written as, 

    2

1
p C g p

p
E

 




 (5.4) 

Now, we have to find the solution of Eq. (5.3) with the help of Eq. (5.4) and one can 

write easily as 

    2

2

0

1
C p dp g p C g p

p
E



     





  (5.5) 

We set E as 

 





2

E  (5.6) 

Eq. (5.5) becomes 

  2 2

2 2

0

1
C p dp g p C

p



    
 

 
 

  (5.7) 

  2 2

2 2

0

1
C C p dp g p

p



    
 

  (5.8) 

 

   
2

2 2 22 2
0

1 1
C C p dp

pp



   
  

  (5.9) 

 

   
2

2 2 22 2

1 1 1
C C p dp

2 pp





    
  

  (5.10) 

where, 

   2 2 22 2

1 1 1

2 pp




     
 

 
   

2

2 2 2 2

1 1 1
C C p dp

4 p p






   

      
  (5.11) 

 
     

2

2 22 2

1 1 1
C C p dp

4 p i p i






   

        
  (5.12) 

The pole appear at  ip  and  ip . Therefore we use Residue theorem. 

      
0

0
z z

Residue b lim z z f z


   (5.13) 

    
    22

2

ip p

1

ipip

p
iplimisRe







 (5.14) 
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  
 

 

2

2 2

i
Res i

2i


  

   
 (5.15) 

  
 2 2

i
Res i

2


  

 
 (5.16) 

    
     

2

2 2p i

p 1
Res i lim p i

p i p i p 


    

      
 (5.17) 

  
 
 22

2

i2

i
isRe




  (5.18) 

  
 222

i
isRe




  (5.19) 

 Residue Theorem,   sRei2dz)z(f  (5.20) 

 
   

    2

2 2 2 2

1 1
p dp 2 i Res i Res i

p p





       
    

  (5.21) 

 
       



























22222222

2

2

i

2

i
i2

p

1

p

1
pdp  (5.22) 

 
   

 2

2 22 2 2 2

1 1
p dp

p p





  
 

     
  (5.23) 

 
   

2

2 2 2 2

1 1
p dp

p p






 

      
  (5.24) 

 
 

1
C C

4

 
 

    
 (5.25) 

 
 

2
C C

4


 

   
 (5.26) 

The intermediate step is 

 
 

2
1

4


 

   
 (5.27) 

And then, 

 





4
 (5.28) 

Then we can get the binding energy in fm
-1

 with the help of Eq. (5.6). 
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3. Results and Discussion 

Now we have the analytical result of transition matrix. In this equation the potential 

strength λ, the form factor parameter β and the incident momentum p0 are known and the 

transition matrix element can easily be calculated. From the transition matrix element, we can 

deduce the phase shift by using the relation 
)Re(

)Im(

T

T
  where Im(T) is the imaginary part of 

transition matrix and Re(T) is real part of transition matrix. 

We will discuss the nature of interaction and the phase shift by using the parameter 

λ=−0.5592 MeV fm
-1

 and β=1.13 fm
-1

 which give the deuteron binding energy. In order to 

study the nature of interaction, we vary the potential strengths from negative to positive value 

and produce the phase shifts for various incident energies, which is shown in the figure (1). 

The nature of  phase shift graph is shown in the figure (1).  

From the figure (1) we can see that the phase shift is positive for the attractive 

interaction and negative for the repulsive interaction. From the experiment we can get the 

scattering cross section and then we can deduce the transition matrix from it. If we know the 

transition matrix we can calculate the phase shift. From those phase shifts, we can know the 

nature of interaction whether it is attractive or repulsive. 

Here, the known values are , and μ.  So, we can calculate α by using Eq. (5.28) 

in which β = 1.13 fm
-1

, λ = -0.5592 fm
-2 

and the mass of nucleon is taken as 938.903 MeV, 

but we are working in momentum space so we have to change MeV to fm
-1

 by dividing ћc = 

197.3286 MeVfm.  If we have known α, then we can get the binding energy in fm
-1

 with the 

help of Eq. (5.6) and multiplied by c  because we usually express the energy in MeV unit. 

Now, we may check our program code for numerical results by comparing with the 

analytical results with Yamaguchi potential. Now The binding energy of deuteron is 

evaluated analytically and it is 2.22 MeV.  
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Figure.(1). The phase shift for various incident energies. 

 

4. Conclusion 

From the nature of phase shift we can easily determine the nature of interaction 

whether it is attractive or repulsive of interesting system. Although we have given some 

knowledge with respect to transition matrix which is very crude, one would be able to 

continue getting more detailed and advanced facts based on this crude knowledge. It would 

help the under graduate students to get a better understanding the quantum mechanical 

scattering process in nuclear particles physics. 
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